Journal of Organometallic Chemistry, 277 (1984) 311-318 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

### SILAETHENE

# XII \*. MASSENSPEKTROMETRISCHE UNTERSUCHUNGEN AN MONOSILACYCLOBUTANEN

N. AUNER, M. BINNEWIES und J. GROBE\*

Anorganisch-Chemisches Institut der Universität Münster, Corrensstrasse 36, D-4400 Münster/Westf. (B.R.D.)

(Eingegangen den 4. Juli 1984)

#### Summary

Mass spectra of monosilacyclobutanes  $H_2 \dot{Si}CH_2CH_2\dot{C}H_2$  (1),  $Me(H)\dot{Si}CH_2CH_2\dot{C}H_2$  $CH_2$  (2),  $Me_2 \dot{Si}CH_2CH_2\dot{C}H_2$  (3),  $(CD_3)_2 \dot{Si}CH_2CH_2\dot{C}H_2$  (4),  $Me(Cl)\dot{Si}CH_2CH_2\dot{C}H_2$ (5),  $Cl_2 \dot{Si}CH_2CH_2\dot{C}H_2$  (6),  $F_2 \dot{Si}CH_2CH_2\dot{C}H_2$  (7),  $H_2 \dot{Si}CH(Me)CH_2\dot{C}H_2$  (8),  $Me_2 \dot{Si}CH(Me)CH_2\dot{C}H_2$  (9) and  $Cl_2 \dot{Si}CH(Me)CH_2\dot{C}H_2$  (10) have been recorded using ionization potentials between 70 and 15 eV. Appearance potentials (*AP*) were deduced for the  $M^+$ ,  $(M^+ - 28)$  and  $(M^+ - 15)$  fragments, and the enthalpy of dissociation for the process



has been calculated from a thermochemical cycle  $(49.6 \pm 5 \text{ kcal mol}^{-1}; 207.4 \text{ kJ} \text{mol}^{-1})$ . The energy differences  $\Delta_1 = AP(M^+ - 28) - AP(M^+)$  for the elimination of  $C_2H_4$  from the parent ions  $[R^1R^2SiCH_2CH_2CH_2]^+$  increase with increasing ionization potential of the substituents  $R^1$  and  $R^2$ . The elimination of  $CH_3$  from parent ions without methyl substituents is obviously a low-energy fragmentation route as indicated by the fairly low values for  $\Delta_2 = AP(M^+ - 15) - AP(M^+)$ .

### Zusammenfassung

Die Massenspektren der Monosilacyclobutane  $H_2SiCH_2CH_2CH_2$  (1), Me(H)SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> (2), Me<sub>2</sub>SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> (3), (CD<sub>3</sub>)<sub>2</sub>SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> (4), Me(Cl)SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> (5), Cl<sub>2</sub>SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> (6), F<sub>2</sub>SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> (7),

<sup>\*</sup> Mitteilung XI: siehe Lit. 1.

H<sub>2</sub>SiCH(Me)CH<sub>2</sub>CH<sub>2</sub> (8), Me<sub>2</sub>SiCH(Me)CH<sub>2</sub>CH<sub>2</sub> (9) und Cl<sub>2</sub>SiCH(Me)CH<sub>2</sub>CH<sub>2</sub> (10) wurden mit Ionisierungspotentialen zwischen 70 und 15 eV registriert. Für die Ionen  $M^+$ ,  $(M^+ - 28)$  und  $(M^+ - 15)$  werden die Auftrittspotentiale (AP) bestimmt und die Dissoziationsenthalpie der Reaktion

$$H_2S_1 \longrightarrow H_2S_1 = CH_2 + C_2H_4$$

aus einem Kreisprozess berechnet  $(49.6 \pm 5 \text{ kcal mol}^{-1}, 207.4 \text{ kJ mol}^{-1})$ . Die Energiedifferenzen  $\Delta_1 = AP(M^+ - 28) - AP(M^+)$  für die Eliminierung von  $C_2H_4$ aus den Mutterionen  $[R^1R^2SiCH_2CH_2CH_2]^+$  nehmen mit steigendem Ionisationspotential der Substituenten  $R^1$  und  $R^2$  zu. Die Abspaltung von  $CH_3$  aus Mutterionen ohne Methylgruppen ist offensichtlich ein energiegünstiger Fragmentierungsweg, wie aus den relativ niedrigen Werten für  $\Delta_2 = AP(M^+ - 15) - AP(M^+)$  hervorgeht.

### Einleitung

~

Im Rahmen einer systematischen massenspektrometrischen Untersuchung der Pyrolyse von Silacyclobutanen haben wir uns mit dem Fragmentierungsverhalten dieser Verbindungen bei der Ionisierung durch Elektronenstoss beschäftigt.

Die Fragmentierung der Silacyclobutane führt nach eigenen Untersuchungen und Literaturangaben [2–6] zu den gleichen Bruchstückionen, wie sie auch bei der Elektronenstoss-Ionisation der Pyrolyseprodukte auftreten. Im Hinblick auf die Bildung von Silaethenen ist dabei die Abspaltung von Ethen aus den genannten Molekülen bzw. aus den durch Elektronenstoss gebildeten Molekülionen von besonderem Interesse. Um zu entscheiden, ob im Massenspektrum beobachtete Ionen aus thermisch erzeugten Vorstufen oder durch Fragmentierung von Mutterionen entstanden sind, ist eine möglichst genaue Kenntnis der energetischen Verhältnisse bei der Ionisierung und Fragmentierung erforderlich. Diesem Ziel dienten Untersuchungen des Pyrolyseverhaltens einiger Monosilacyclobutane mit einer früher entwickelten und für diese Untersuchungen modifizierten Messanordnung [7]; die Pyrolyse erfolgt innerhalb des Massenspektrometers unmittelbar vor der Eintrittsöffnung der Ionenquelle. Ausserdem erlaubt die Apparatur die Umsetzung der Pyrolyseprodukte mit Abfangreagenzien [8]. Wir berichten hier über das Fragmentierungsverhalten von Monosilacyclobutanen.

### Experimentelles

Die Untersuchungen wurden mit einem Quadrupolmassenspektrometer der Fa. Extranuclear Laboratories durchgeführt. Die Proben werden nach Reduzierung des Druckes durch ein Feinstdosierventil eingebracht und durchströmen ein etwa 150 mm langes Quarzrohr von 3 mm Innendurchmesser, das ca. 5 cm vor der Ionenquelle endet. Das Rohr kann durch einen Ofen auf Temperaturen bis ca. 1300 °C aufgeheizt werden. Die Ionisierung erfolgt durch Elektronenstoss. Die Ionisierungsausbeutekurven wurden mit einem X-Y-Schreiber registriert und nach dem üblichen Verfahren [9] der linearen Extrapolation unter Verwendung einer durch Ionisierung von Argon geeichten Energieskala ausgewertet.

# TABELLE 1

ELEKTRONENSTOSSFRAGMENTIERUNG DER MONOSILACYCLOBUTANE 1–10 SOWIE AUFTRITTSPOTENTIALE (AP) EINIGER WICHTIGER IONEN

| Verb | m/e                          | Rel. Intensität bei |       |       | AP (eV) |
|------|------------------------------|---------------------|-------|-------|---------|
| Nr.  |                              | 70 eV               | 25 eV | 15 eV |         |
| 1    | 39                           | 103                 | 29    |       |         |
|      | 41                           | 113                 | 68    | 27    |         |
|      | 42                           | 195                 | 110   | 129   |         |
|      | 43                           | 381                 | 265   | 75    |         |
|      | 44                           | 1000                | 1000  | 1000  | 11.1    |
|      | 45                           | 170                 | 159   | 82    |         |
|      | 55                           | 67                  | 44    | 12    |         |
|      | 70                           | 205                 | 228   | 358   | 10.1    |
|      | 71                           | 154                 | 169   | 234   | 10.5    |
|      | 72 ( <i>M</i> <sup>+</sup> ) | 395                 | 442   | 1156  | 9.3     |
| 2    | 43                           | 647                 | 364   | 38    |         |
|      | 44                           | 149                 | 106   | 46    |         |
|      | 45                           | 280                 | 195   | 38    |         |
|      | 58                           | 1000                | 1000  | 1000  | 10.2    |
|      | 71                           | 55                  | 48    | 35    |         |
|      | 86 ( <i>M</i> <sup>+</sup> ) | 201                 | 200   | 355   | 8.2     |
| 3    | 41                           | 161                 | 96    | ~     |         |
|      | 42                           | 165                 | 87    | 132   |         |
|      | 43                           | 349                 | 79    | -     |         |
|      | 44                           | 434                 | 279   | 20    |         |
|      | 59                           | 187                 | 140   | 50    |         |
|      | 72                           | 1000                | 1000  | 1000  | 10.1    |
|      | 85                           | 59                  | 57    | 53    | 9.9     |
|      | $100(M^+)$                   | 182                 | 176   | 342   | 8.0     |
| 4    | 46                           | 768                 | 143   | 11    |         |
|      | 47                           | 395                 | 190   | 19    |         |
|      | 48                           | 423                 | 195   | 15    |         |
|      | 65                           | 225                 | 139   | 56    |         |
|      | 78                           | 1000                | 1000  | 1000  | 10.0    |
|      | 88                           | 34                  | 35    | 38    | 9.7     |
|      | 91                           | 16                  | 15    | 24    | 8.8     |
|      | $106(M^+)$                   | 89                  | 142   | 206   | 7.9     |
| 5    | 41                           | 73                  | 32    | _     |         |
|      | 42                           | 75                  | 25    | 31    |         |
|      | 43                           | 127                 | 38    | -     |         |
|      | 63 "                         | 575                 | 285   | -     |         |
|      | 92 ª                         | 1000                | 1000  | 1000  | 10.9    |
|      | 105 a                        | 88                  | 116   | 109   | 9.7     |
|      | 120 $^{a}(M^{+})$            | 231                 | 256   | 594   | 8.5     |
| 6    | 39                           | 169                 | 30    | ~     |         |
|      | 41                           | 134                 | 84    | 15    |         |
|      | 42                           | 137                 | 96    | 73    |         |
|      | 63 <i>a</i>                  | 435                 | 103   |       |         |
|      | 112 <i>a</i>                 | 1000                | 1000  | 1000  | 11.7    |
|      | 125 <i>a</i>                 | 116                 | 126   | 278   | 10.1    |
|      | $140 \ ^{a}(M^{+})$          | 183                 | 188   | 590   | 9.0     |

| Verb | m/e              | Rel. Intensität bei |       |       | AP (eV) |
|------|------------------|---------------------|-------|-------|---------|
| Nr.  |                  | 70 eV               | 25 eV | 15 eV |         |
| 7    | 39               | 305                 | 42    |       |         |
|      | 41               | 320                 | 170   | 22    |         |
|      | 42               | 1000                | 1000  | 1000  |         |
|      | 47               | 345                 | 66    | _     |         |
|      | 80               | 617                 | 440   | 171   | 12.8    |
|      | 89               | 70                  | 33    | -     | 14.3    |
|      | 93               | 102                 | 83    | 68    | 10 9    |
|      | $108 (M^+)$      | 266                 | 256   | 460   | 10.0    |
| 8    | 39               | 300                 | 50    | _     |         |
|      | 41               | 369                 | 179   | 43    |         |
|      | 42               | 187                 | 76    | 45    |         |
|      | 43               | 549                 | 272   | 56    |         |
|      | 44               | 356                 | 200   | 86    | 12.2    |
|      | 45               | 491                 | 323   | 108   | 123     |
|      | 55               | 133                 | 73    | 25    |         |
|      | 58               | 1000                | 1000  | 1000  | 98      |
|      | 71               | 98                  | 91    | 75    | 10.4    |
|      | 73               | 105                 | 98    | 91    |         |
|      | 84               | 24                  | 23    | 34    | 8.2     |
| 9    | 43               | 328                 | 45    | _     |         |
|      | 44               | 380                 | 262   | 26    |         |
|      | 45               | 203                 | 100   | ~ 9   |         |
|      | 59               | 313                 | 252   | 107   |         |
|      | 72               | 1000                | 1000  | 1000  | 12.3    |
|      | 86               | 211                 | 291   | 442   | 9.4     |
|      | 99               | 31                  | 39    | 38    | 10.4    |
|      | $114(M^+)$       | 73                  | 85    | 166   | 86      |
| 10   | 41               | 480                 | 209   | 90    |         |
|      | 56               | 216                 | 233   | 197   |         |
|      | 63 a             | 448                 | ***   | ~     |         |
|      | 112 "            | 1000                | 889   | 392   | 12.2    |
|      | 113 <sup>a</sup> | 762                 | 1000  | 1000  | 10.1    |
|      | 126 <i>a</i>     | 256                 | 328   | 301   | 10.4    |
|      | 139 "            | 32                  | 34    | 26    | 11.0    |
|      | $154^{a}(M^{+})$ | 78                  | 119   | 213   | 8.7     |

TABELLE 1 (Fortsetzung)

<sup>4</sup> Intensitätswerte wurden bezüglich der Isotopenhäufigkeit von <sup>35</sup>Cl korrigiert.

Die eingesetzten Silacyclobutane wurden nach früher beschriebenen Verfahren dargestellt und spektroskopisch charakterisiert [10].

### Messungen und Messergebnisse

Die Massenspektren der Verbindungen 1 bis 10 wurden bei 70, 25 und 15 eV registriert; für einige Ionen wurden die Auftrittspoteniale gemessen. Die Daten sind in Tab. 1 wiedergegeben, wobei die Intensitäten jeweils auf den Peak höchster Intensität ( $I_{max} = 1000$ ) bezogen sind. Bei den Cl-haltigen Fragmentionen sind die Intensitätsangaben auf der Basis der Isotopenhäufigkeit korrigiert.

# **Diskussion der Ergebnisse**

Die Fragmentierung der untersuchten Monosilacyclobutane ist generell durch die Abspaltung von Ethen aus dem Mutterion bestimmt. Die positive Ladung verbleibt bei dem siliciumhaltigen Fragment, das als intensitätsstarker  $(M^+ - 28)$ -Peak bei allen Verbindungen beobachtet wird. Die weitere Fragmentierung dieses Ions ist für die vorliegende Diskussion nur von untergeordnetem Interesse. Betrachtet werden die energetischen Verhältnisse bei der Ionisierung der Silacyclobutane und bei der Abspaltung von  $C_2H_4$   $(M^+ - 28)$  bzw.  $CH_3$   $(M^+ - 15)$  aus den Mutterionen. Bei den in 2-Position methylsubstituierten Ringen wird ausserdem die Eliminierung von  $C_3H_6$   $(M^+ - C_3H_6)$  berücksichtigt. Bei den in 2-Position nicht substituierten Monosilacyclobutanen erwartet man auf Grund empirischer Regeln, dass die Ionisierungsenergien der Verbindungen von denen der Substituenten abhängig sind, und zwar sollten die Werte mit steigender Ionisierungsenergie der Substituenten ansteigen. Die erwartete Abfolge



steht mit den experimentell bestimmten Werten in Einklang.

Von besonderem Interesse sind die energetischen Verhältnisse bei der Abspaltung eines Ethenmoleküls aus den verschiedenen Molekülionen. Tabelle 2 gibt die Auftrittspotentiale für  $M^+$ ,  $(M^+ - 28)$  und  $(M^+ - 15)$  sowie die daraus ermittelten Energiedifferenzen  $\Delta_1$  bzw.  $\Delta_2$  wieder.

Die Differenz  $\Delta_1 = AP(M^+ - 28) - AP(M^+)$  entspricht der Energie, die für die Reaktion

$$R^{1}$$
  $Si = CH_{2}^{+} + C_{2}H_{4}$ 

aufzuwenden ist. Die  $\Delta_1$ -Werte der Tab. 2 zeigen eine deutliche Abhängigkeit von

**TABELLE 2** 

| Verbindung<br>Nr. | $AP(M^+)$ | $AP(M^+ - 28)$ | $AP(M^+ - 15)$ | Δ <sub>1</sub> | Δ <sub>2</sub> |
|-------------------|-----------|----------------|----------------|----------------|----------------|
| 1                 | 9.3       | 11.1           | -              | 1.8            |                |
| 2                 | 8.2       | 10.2           | 10.7           | 2.0            | 2.5            |
| 3                 | 8.0       | 10.1           | 9.9            | 2.1            | 1.9            |
| 4                 | 7.9       | 10.0           | 8.8            | 2.1            | 0.9            |
| 5                 | 8.5       | 10.9           | 9.7            | 2.4            | 1.2            |
| 6                 | 9.0       | 11.7           | 10.1           | 2.7            | 1.1            |
| 7                 | 10.0      | 12.8           | 10.9           | 2.8            | 0.9            |
| 8                 | 8.2       | 9.8            | 10.4           | 1.6            | 2.2            |
| 9                 | 8.6       | 9.4            | 10.4           | 0.8            | 1.8            |
| 10                | 8.7       | 10.4           | 11.0           | 1.7            | 2.3            |

AUFTRITTSPOTENTIALE (AP) DER IONEN  $M^+$ , ( $M^+ - 28$ ) UND ( $M^+ - 15$ ) SOWIE EN-ERGIEDIFFERENZEN  $\Delta_1 = AP(M^+ - 28) - AP(M^+)$  UND  $\Delta_2 = AP(M^+ - 15) - AP(M^+)$  IN eV

den Substituenten am Si-Atom. So erfordert die Ethenabspaltung aus den Molekülionen zunehmend mehr Energie, wenn Wasserstoff durch  $CH_3$ , Cl und F ersetzt wird. Die gemischt substituierten Verbindungen ordnen sich in diese Reihe ein.

Die gemessenen Daten lassen sich Energieumsätzen in einem Kreisprozess zuordnen und ermöglichen die Bestimmung der Dissoziationsenergie des Silacyclobutans in Silaethen und Ethen, wenn die Ionisierungsenergie des jeweiligen Silaethens bekannt ist (Schema 1). So ergibt sich für die Dissoziation des

Grundkörpers H<sub>2</sub>Si mit der von Bock und Mitarbeitern [11] berechneten

Ionisierungsenergie für H<sub>2</sub>Si=CH<sub>2</sub> von 8.95 eV und mit unserem Wert von 11.1 eV für das Auftrittspotential von  $(M^+ - 28)$ :

 $\Delta H_{\rm R}^{\rm o} = 2.15 \text{ eV} = 49.6 \text{ kcal mol}^{-1}$ (207.4 kJ mol<sup>-1</sup>)

Dieser Enthalpiewert ist sicher nur als Richtwert anzusehen und auf Grund der Ungenauigkeiten der Auftrittspotentiale und Ionisierungsenergien mit einem Fehler von  $\pm 5$  kcal mol<sup>-1</sup> behaftet. Er stimmt überraschend gut mit der nach Walsh [12] aus Bindungsenergien berechneten Reaktionsenthalpie überein:

$$\Delta H_{R}^{\circ} = D(C-C) + D(Si-C) - E(Ring) - E_{\pi}(C=C) - E_{\pi}(Si=C)$$
  
= 85 + 88 - 20 - 59 - 41  
$$\Delta H_{R}^{\circ} = 53 \text{ kcal mol}^{-1} (221.5 \text{ kJ mol}^{-1})$$

Verwendet man die von Kubaschewski [13] angegebenen empirischen Formeln zur Berechnung der Entropie von Gasen, so resultiert für die Reaktion (1) des Kreisprozesses eine Entropieänderung  $\Delta S_R^{\circ} = 40.5$  cal K<sup>-1</sup> mol<sup>-1</sup> (169.5 J K<sup>-1</sup> mol<sup>-1</sup>). Für einen realistischen Gesamtdruck von 10<sup>-3</sup> bar im Pyrolyserohr ist dann im Fall des Silacyclobutans eine Zersetzungstemperatur von etwa 1000 K zu erwarten, ein Wert, der mit den Experimenten in Einklang steht. Aussagen über



SCHEMA 1

thermodynamisch begünstigte Folgereaktionen der gebildeten Silaethene lassen sich aus dieser energetischen Behandlung der Thermolyse von Silacyclobutanen selbstverständlich nicht ableiten.

Bei den in Position 2 substituierten Silacyclobutanen sind zwei primäre Fragmentierungsschritte (a) und (b) in Betracht zu ziehen (Schema 2).

Energetisch sollten <u>beide Wege</u> etwa gleichwertig <u>sein</u>. Die Messung der Auftrittspotentiale von H<sub>2</sub>SiCH(Me)CH<sub>2</sub>CH<sub>2</sub> und Cl<sub>2</sub>SiCH(Me)CH<sub>2</sub>CH<sub>2</sub> ergibt jedoch, dass die *AP*-Werte für ( $M^+ - C_3H_6$ ) mit jeweils 12.2 eV deutlich über denen der ( $M^+ - C_2H_4$ )-Fragmente (9.8 bzw. 10.4 eV) liegen. Daraus ist zu folgern, dass R<sup>1</sup> Si=CH<sub>2</sub><sup>+</sup> erst in einem zweiten Fragmentierungsschritt aus R<sup>2</sup> Si=CH-CH<sub>3</sub><sup>+</sup>

durch Abspaltung einer Methylengruppe gebildet wird.

Tabelle 2 enthält ausser den Auftrittspotentialen der  $(M^+ - C_2H_4)$ -Fragmente die Daten für die  $(M^+ - CH_3)$ -Peaks. Es überrascht, dass die Abspaltung einer Methylgruppe aus solchen Mutterionen besonders leicht erfolgt, die am Si negative Substituenten wie Cl oder F, aber keine CH<sub>3</sub>-Gruppen tragen. Ursprung des CH<sub>3</sub>-Fragments aus dem Mutterion kann hier nur die C<sub>3</sub>-Kette des Silacyclobutanringes sein. Um diesen Abbaumechanismus auch für das 1,1-Dimethylderivat zu bestätigen, wurde die Fragmentierung der Perdeuteromethyl-analogen Verbindung untersucht. Hier werden erwartungsgemäss die Bruchstückionen  $(M^+ - 18)$  für die Abspaltung von CD<sub>3</sub> vom Si und  $(M^+ - 15)$  für die Eliminierung von CH<sub>3</sub> aus der C<sub>3</sub>-Einheit des Ringes nachgewiesen. Als Werte für

$$\Delta_2 = AP(M^+ - 15) - AP(M^+)$$
 und

$$\Delta_2' = AP(M^+ - 18) - AP(M^+)$$

werden in guter Übereinstimmung mit den entsprechenden Differenzen der übrigen Verbindungen  $\Delta_2 = 0.9$  eV und  $\Delta'_2 = 1.6$  eV registriert. Daraus ist zu folgern, dass der  $\Delta_2$ -Wert in Tabelle 2 für Me<sub>2</sub>SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> mit 1.9 eV praktisch ausschliesslich durch die Si-Me-Spaltung bestimmt ist. Bei der Verbindung H<sub>2</sub>SiCH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub> ist die Abspaltung von CH<sub>3</sub> gegenüber der Eliminierung von C<sub>2</sub>H<sub>4</sub> energetisch offensichtlich so ungünstig, dass ein ( $M^+ - 15$ )-Fragment nicht mehr beobachtet wird. Die Tatsache, dass  $\Delta_2$  für die CH<sub>3</sub>-Abspaltung aus dem Ring



SCHEMA 2

kleiner ist als für die Abspaltung von Methylsubstituenten, spricht für eine günstige Stabilisierungsmöglichkeit des Ions  $[X_2Si(CH)CH_2]^+$  (Sila- $\pi$ -allyl<sup>+</sup>?). Eine Deutung dieses Befundes ist ohne exakte Kenntnis der Struktur des Fragmentes nicht möglich.

# Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie sowie den Firmen Bayer AG und Wacker AG für die Unterstützung dieser Untersuchungen.

## Literatur

- 1 N. Auner und J. Grobe, Z. Anorg. Allg. Chem., 490 (1982) 38.
- 2 V.Y. Orlov, L.E. Gusel'nikov, N.S. Nametkin und R.L. Ushakova, Org. Mass. Spectr., 6 (1972) 309.
- 3 P. Jutzi und P. Langer, J. Organomet. Chem., 139 (1977) 11.
- 4 N. Auner und J. Grobe, J. Organomet. Chem., 197 (1980) 13.
- 5 N. Auner und J. Grobe, J. Organomet. Chem., 222 (1981) 33.
- 6 C.S. Cundy, M.F. Lappert und T.R. Spalding, J. Chem. Soc., Dalton Trans., (1976) 558.
- 7 M. Binnewies, Z. Anorg. Allg. Chem., 435 (1977) 156.
- 8 N. Auner, M. Binnewies und J. Grobe, unveröffentlicht.
- 9 R.E. Honig, J. Chem. Phys., 16 (1948) 105.
- 10 N. Auner und J. Grobe, J. Organomet. Chem., 188 (1980) 25.
- 11 P. Rosmus, H. Bock, B. Solouki, G. Maier und G. Mihm, Angew. Chem., 93 (1981) 616; Angew. Chem. Int. Ed. Engl., 20 (1981) 598.
- 12 R. Walsh, Acc. Chem. Res., 14 (1981) 246 sowie personl. Mitteilung.
- 13 O. Kubaschewski, E.L. Evans und C.B. Alcock, Metallurgical Thermochemistry, 4. Ed., Oxford, 1967.